
FULL PAPER
www.advtheorysimul.com

Isotropic “Quasi-Fluid” Metamaterials Designed
by Topology Optimization

Huikai Zhang, Zhan Kang,* Yiqiang Wang, and Wenjun Wu

Bi-mode artificial metamaterials have anisotropic mechanical properties, with
the ratio of bulk modulus and shear modulus approaching an infinite value in
ideal conditions. The microstructures of such metamaterials are currently
mostly determined by parameter synthesis on the basis of existing heuristic
configuration designs, which may considerably restrict their topologies and
shapes. New octagon and hexagonal honeycomb bi-mode metamaterials (2D)
are designed through a more systematic approach based on the independent
point-wise interpolation method of topology optimization. The objective
function is defined as a weighted combination of the bulk and shear moduli.
By tuning the values of different weighted coefficients, the transition
mechanism can be acquired from the regular microstructure to the bi-mode
metamaterial with needle-like or double-cone rods. It is also found that simply
increasing the volume fraction in the single material design cannot further
improve the target performance, but introducing a small amount of hard
material into the design domain can noticeably enhance the bulk modulus.
One representative optimized microstructure is fabricated by 3D printing with
stainless steel and polymer materials. Uniaxial quasi-static compression tests
and finite element simulations reveal the layer-wise deformation modes of the
bi-mode “quasi-fluid” metamaterial and its capacity to absorb external
energy.

1. Introduction

Artificial metamaterials can exhibit remarkable physical prop-
erties that extend far beyond the properties of their con-
stituent materials.[1] Milton and Cherkaev[2] initially demon-
strated the possibility of achieving specified elasticity tensors
by combining soft and hard materials. They designed bi-
mode (for 2D cases) and penta-mode (for 3D cases) meta-
materials. Such metamaterials have anisotropic mechanical
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properties with high bulk modulus, but
low shear modulus. It is noted that strict-
sense bi-mode or penta-mode metamateri-
als with perfect hinges (with zero rotational
stiffness) are not mechanically stable under
shear strains, and therefore cannot be used
in real engineering.
Kadic et al.[3] fabricated the penta-mode

and bi-mode metamaterials proposed by
Milton and Cherkaev[2] using polymer 3D
printing. In contrast to the “perfect” hinges
in the idealized conceptual design with an
infinite figure of merit (FOM) (𝛼FOM, which
is the ratio between the bulk and shearmod-
ulus), the diameters d of the connecting
hinges were set to be finite values. Also,
the 𝛼FOM values become larger as the di-
ameter of the hinges decreases, resulting in
a “quasi-fluid” microstructure. Some cross-
media assemblies of solids and fluids with a
large ratio B∕G can also be regarded quasi-
fluid materials.[4]

With different anisotropic stiffness and
shear properties, the bi-mode (or penta-
mode) metamaterial designs given by
Milton and Cherkaev[2] have been extended
to various applications. For instance,
Layman[5] presented a bi-mode design

formed by tuning parameterized oblique honeycomb lattice,
which can be tailored for acoustic applications. The penta-mode
metamaterial was also used to implement an elasto-mechanical
unfeelability cloak.[6] Following this, 2D bi-mode metamaterial
designs for mechanical cloaks based on direct lattice transforma-
tion were investigated.[7,8] In these works, some graded bi-mode
metamaterials were generated by tuning the basic parameters of
the double-cone configuration. In addition, such metamaterials
have also been used to design water-like cloaks,[9] seismic base
isolation devices,[10,11] wave filters,[12] and phononic crystals.[13]

Recently, research works on the mechanical responses of metal-
lic penta-mode metamaterials with high compression modulus
and energy absorbing capacity have also attracted increasing
interest.[14,15] Double-cone rhombic dodecahedron lattices with
plastic joints have also been reported, which can improve the
compression modulus and initial yield strength.[16] Generally,
most bi-mode or penta-mode metamaterial designs are based on
the configurations described by Milton and Cherkaev,[2] which to
some extent restricts the design space.
Topology optimization techniques, including the method

of solid isotropic material with penalization (SIMP),[17] the
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Figure 1. Schematic illustration of a bi-mode metamaterial and optimized designs. a) Inset I is a staggered composite material (red and blue colors
represent the soft material and the reinforcing hard material, respectively); insets II and III are the deformed configurations under tension in lateral
and vertical directions, respectively; inset IV is the configuration under shear deformation. b–d) The optimization results of a two-phase microstructure,
where b) presents the curves of the bulk and shear moduli versus the weight factor w, c) presents the FOM value 𝛼FOM, and d) presents nine periodic
arrays of optimized microstructures obtained for different values of the weight coefficient.

level set method,[18] and the bi-directional evolutionary struc-
tural optimization method,[19] have been used in the design
of mechanical metamaterials,[20,21] bionic structures,[22,23] opti-
cal metasurfaces,[24] photonic structure,[25,26] and additive man-
ufactured products.[27] Sigmund[28] designed bi-mode and penta-
mode metamaterials in the form of discretized truss or frame
structures. Mendez et al.[29] and Podesta et al.[30] optimized
acoustic cloaking devices composed of a needle-like orthogonal
anisotropic honeycomb-like bi-mode metamaterial using inverse
homogenization. However, systematic methods for designing bi-
mode metamaterials still need to be exploited.
In this work, a topology optimization model is proposed to de-

sign bi-mode metamaterials. Specifically, the independent point
density interpolation (iPDI)[31] model is adopted to represent the
topologies of themicrostructures to be optimized. The optimized
bi-mode microstructures, which have double-cone shaped bar
members, possess relatively high bulk modulus but low shear
modulus. Mechanical properties, including the elastic modulus
and Poisson’s ratio, of the new optimized octagon and bi-material
bi-mode microstructures are investigated. For studying the load-
bearing capacity and failure modes of the optimized bi-mode

metamaterials, 3D printed metallic and polymer specimens are
tested through quasi-static compression experiments.

2. Results

2.1. Theory and Method

For 2D staggered composite microstructures composed of a soft
material (red color) and a reinforcing hard material (blue color)
(inset I in Figure 1a), there are three orthogonal deformation
modes, namely tension in the lateral direction, tension in the
vertical direction, and shear deformation (insets II–IV in Fig-
ure 1a). The effective elasticity tensor ℂ of the microstructure
can be computed by the asymptotic homogenization method
(AHM) (see Supporting Information). It can be written in
matrix form as [ℂ]3×3 = [𝚽]T𝝀[𝚽], where [𝝀] = diag{𝜆 1, 𝜆 2, 𝜆 3},
[𝚽] = [{Φ1}, {Φ2}, {Φ3}], 𝜆 i and {Φ}i (i = 1, 2, 3) are respectively
the three eigenvalues and orthogonalized eigenvectors of the
elasticity matrix. A 2D bi-mode metamaterial is characterized
by the property that its effective elastic tensor ℂ has a large
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eigenvalue related to a hard deformation mode, so that the mate-
rial cannot deform easily under the corresponding external loads
(inset II in Figure 1a). It also has another two small eigenval-
ues corresponding to the two easy deformation modes, so that it
cannot resist certain loading conditions (insets III and IV in Fig-
ure 1a). Besides, a bi-mode metamaterial has an anisotropic me-
chanical property with a high bulk modulus but a low (or nearly
zero in the ideal case) shear modulus.
For an isotropic material, the bulk modulus and shear

modulus can be expressed as B = (
∑2

i,j ℂiijj)∕4 and G = ℂ1212,
respectively.[32] The mechanical property of an anisotropic bi-
mode metamaterial can be characterized by 𝛼FOM = B∕G.[3,6]
In the optimization formulation, it is particularly important

to define a suitable objective function to generate reasonable de-
signs. Maximizing the bulk modulus and minimizing the shear
modulus are generally two conflicting design objectives. On the
basis of the previous discussion, we see that 𝛼FOM is to be maxi-
mized in the bi-mode metamaterial design. In order to avoid in-
stability of the optimization process, we state the optimization
problem as amulti-objective optimizationmodel tomaximize the
objective function f (�̃�) = (1 − w)B − wG. Here, 0 ≤ w ≤ 1 is the
weight factor and �̃� is the vector of design variables in the iPDI
method (see Supporting Information). Note that the design prob-
lem degenerates into a single-objective optimization problem for
maximization of the bulk modulus when w = 0, or minimization
of the shear modulus when w = 1. With a suitable weight factor
w, this objective function is able to generate transitional designs
with desired properties ranging from extremely high bulk mod-
ulus to extremely low shear modulus.
Thematerial volume constraint and the isotropy constraint are

also imposed in the optimizationmodel. The design variables are
updated by the method of moving asymptotes (MMA) using the
design sensitivities of the objective and constraint functions. As
usual, the global optimality of the optimization results cannot be
ensured due to the non-convex nature of the topology optimiza-
tion problem, though it can be envisaged that the optimization it-
erations would yield substantially improved topological designs.
Details of the optimization formulation and sensitivity analysis

scheme are provided in Supporting Information.

2.2. Design Optimization Results

We first consider a square design domain with a side length a =
90 mm (see Figure S4a, Supporting Information). Young modu-
lus and Poisson’s ratio of the basic solid material are E = 10GPa
and v = 0.3, respectively. The material density distribution of the
initial design is shown in Figure S4c, Supporting Information.
For the volume fraction V = 0.3 and different values of the

weight factor w, the optimized bulk and shear moduli are given
in Figure 1b, and the corresponding values of 𝛼FOM are given in
Figure 1c (see Table S1, Supporting Information). The optimized
periodic microstructures obtained with different values of the
weight coefficient are also given in Figure 1d. It is seen that the
shear modulus decreases gradually as the weight factor increases
in the range ofw < 0.8, but drops dramatically whenw > 0.8. The
optimized microstructures (denoted by the red point) located at
the right-upper region in Figure 1c are characterized by some

Figure 2. Bi-mode metamaterial with high values of FOM. a) Iteration his-
tories of the optimization process (Ziso = 1.0), b) the FOM values of op-
timized microstructures obtained for different material volume fractions,
and c) optimized periodic microstructure obtained for different material
volume fractions.

double-cone structures linked by weak joints, which are simi-
lar to the penta-mode designs given by Kadic et al.[3] Such mi-
crostructures result in significant reduction of the shear modu-
lus. Specifically, when the weight factor w = 0.96, the optimized
design achieves the highest FOM value of 𝛼FOM = 107.2. Here,
the low shear modulus is mainly attributed to the microstruc-
tural configuration formed by the double-cone bars. However, the
microstructures obtained with this optimizationmodel have very
small effective stiffness (e.g., bulkmodulus), as seen in Figure 1b.
This hinders further increase of the FOM value.
In order to obtain desired bi-mode property while still ensur-

ing sufficient stiffness of the microstructure, we impose a lower
bound constraint of 0.1 MPa on the effective shear modulus of
the microstructure in the optimization model. For the weight
factor w = 0.8, the iteration history of the FOM value is shown
in Figure 2a (the corresponding volume fraction and the objec-
tive function value are given in Figure S6, Supporting Informa-
tion). Here, the maximum iteration steps is specified to be 200.
From the figures, it is seen that the objective function exhibits
a steady increase (Figure S6, Supporting Information) and fi-
nally achieves the optimized FOM value of 𝛼FOM = 1326.2. The
bulk and shear moduli are B = 132.6 MPa and G = 0.1MPa, re-
spectively. The final optimized microstructure (Figure 2a) is also
composed of double-cone bar members. The eigenvalues of the
effective elastic matrix [ℂ] (in Figure 2a) are 𝜆 1 = 265.24, 𝜆 2 =
0.2, and 𝜆 3 = 0.1, and the corresponding orthogonal eigenvec-
tors are {Φ1} = [1∕

√
2, 1∕

√
2, 0]T, {Φ2} = [1∕

√
2, −1∕

√
2, 0]T,

and {Φ3} = [0, 0, 1.0]T. Here, 𝜆 2 and 𝜆 3 are three orders of
magnitude smaller than 𝜆 1, which indicates that the optimized
microstructure can be regarded a two-dimensional bi-mode
metamaterial.
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The isotropy index Ziso = (ℂ1111 + ℂ2222)∕(2ℂ1122 + 4ℂ1212)
(Ziso = 1.0 is the most ideal case, see Equation (S10), Supporting
Information) is used here to verify the isotropic property of the
optimized microstructure. For the effective elastic matrix of the
optimized design given in Figure 2a, this index is Ziso = 1.0,
which means that the optimized microstructure has an isotropic
elastic property.
For the optimized bi-mode metamaterial microstructure, the

two eigenvectors {Φ2} and {Φ3} are the easy deformation modes,
and {Φ1} is the hard deformationmode.We apply the strain fields
{𝜀k} = {Φk} (k = 1, 2, 3) to such a bi-mode microstructure, and
then compute the corresponding stress fields using the gener-
alized Hooke’s law {𝜎k} = [ℂ] {𝜀k} (k = 1, 2, 3), where {𝜎k} is
the vector of stress induced by the applied strain {𝜀k}. The pre-
dicted stress fields are {𝜎1} = [187.55, 187.55, 0]TMPa, {𝜎2} =
[−0.141, 0.141, 0]TMPa, and {𝜎3} = [0, 0, 1]TMPa.

2.3. Finite Element Simulation for Verification of the Optimized
Designs

For the purpose of numerical verification of the optimized mi-
crostructure, a 10mm × 10mm geometrical model of the opti-
mized unit cell was reconstructed through the commercial soft-
ware platformAbaqus (inset I in Figure S7a, Supporting Informa-
tion). Bi-axial and shear displacement loads related to the three
strain fields {𝜀k} (k = 1, 2, 3) were applied on the boundaries of
the bi-mode unit cell, as shown in Figure S7, Supporting Infor-
mation. We found that the deformation mode {𝜀1} had a strain
energy of 16897.9J, while the deformation modes {𝜀2} and {𝜀3}
yielded much smaller strain energy values of 0.0039and 0.003J,
respectively. Besides, the effective Poisson’s ratio is often of inter-
est inmechanical metamaterial design. For an isotropic 2Dmeta-
material, the Poisson’s ratio can vary between −1 to 1.[28] In our
previous work, using the homogenization method, we showed
that an extremePoisson’s ratio v = −1 had been achieved through
the negative Poisson’s ratio metamaterial design.[21] With the
same homogenization procedures, the Poisson’s ratio of the op-
timized isotropic bi-mode metamaterial obtained in this study
is predicted to be 0.998, which is close to the theoretical upper
bound 1.
We then verified the effective Poisson’s ratio of the optimized

metamaterial with a tessellated finite element model. A 7 × 7 pe-
riodic array of the optimizedmicrostructure was constructed and
analyzed with Abaqus, where a uniform lateral displacement of
10 mm was applied to the right edge under the sliding bound-
ary conditions (Figure S7b, Supporting Information). The simu-
lation results show that the average vertical displacements of the
top edge is −9.28 mm, and thus the Poisson’s ratio is estimated
to be v = −(−9.28 mm)∕10 (mm) ≈ 0.93. The small discrepancy
between this value and that predicted by the homogenization
method may be attributed to the accuracy of the reconstructed
CAD model and the finite size of the periodic array model.

2.4. Influences of Volume Fraction

Generally, achievable mechanical properties of microstructures
strongly depend on the material volume fraction. Figure 2b

shows the optimized bi-mode microstructures obtained with dif-
ferent material volume fractions. We find that all of these de-
signs consist of eight double-cone members, and possess values
of 𝛼FOM greater than 1000 (in Figure 2b). It is found that the value
𝛼FOM of the optimized microstructure increases with the mate-
rial volume fraction for the range of V < 0.24, but barely varies
for the range V > 0.24. When comparing the bi-mode metama-
terial designs obtained under the low volume fraction V = 0.15
and the high volume fraction V = 0.32, one can find that more
material is distributed at the middle sections of the double-cone
bars rather than at the joints (in Figure 2c), which cannot signifi-
cantly improve the bulkmodulus of themicrostructures and their
FOM values. Similar conclusions, regarding the elastic modulus
of 3D penta-mode metamaterials fabricated by the power bed fu-
sion technique, were also given by Hedayati et al.[14] This find-
ing suggests the limitation of single-material design of bi-model
metamaterials in achieving desirable effective stiffness.

2.5. Bi-Material Topological Design

In order to further improve the FOM value 𝛼FOM and the stiffness
B of the bi-mode microstructures, in the presence of small-sized
joints (reducing the effective stiffness B), we introduced a small
amount of harder material into the design domain as a reinforc-
ing phase (denoted in blue color in Figure 1a). Here, the reinforc-
ing material has a relatively high elastic modulus EH = 20 GPa
and a Poisson’s ratio vH = 0.3. The volume fraction ratios of the
hard and soft materials are 0.05 and 0.25, respectively. The modi-
fied multi-material interpolation model (Equation (S7), Support-
ing Information) was used in the topology optimization model.
The distribution of the two material phases in the optimized
multi-material bi-mode microstructures is shown in Figure 3a. It
is seen that the microstructure has an overall topology similar to
the design shown in Figure 2, and the soft material mainly forms
themiddle part of the double-cone bars. However, the joints of all
the double-cone bars consist of only the reinforcing hard mate-
rial. From the effective elastic matrix [ℂ] (see Figure S8, Support-
ing Information), it is predicted that this multi-phase bi-mode
metamaterial has a bulk modulus B = 195.84 MPa and 𝛼FOM =
1958.4, which are 1.48 times that of the single-phase counterpart
(Figure 2a).
The above results show that the topological design and mate-

rial selection of the joints have a significant effect on the effective
mechanical properties of the bi-mode microstructures. In prac-
tice, these joints are usually fabricatedwith a finite small size, and
they should have sufficient stiffness to ensure a desired load bear-
ing capacity. To this end, replacing the materials of joints with
a harder material becomes a feasible way to increase the FOM
value of the bi-mode metamaterial.
Rhombic-shaped single-material microstructures have been

used by some researchers in mechanical cloaking device
design.[5] Therefore, the single-material and multi-material
rhombic bi-mode hexagonal microstructures (in Figure 3b,c),
obtained with the proposed optimization model in a rhombic
design domain (Figure S4b, Supporting Information; see Fig-
ure S4d, Supporting Information, for the initial material den-
sity distribution) under the specified volume fraction V = 0.3,

Adv. Theory Simul. 2020, 3, 1900182 © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim1900182 (4 of 7)
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Figure 3. Comparison of single-material and bi-material designs. a) The hard material, soft material phase, and the periodic array of the composite
bi-mode metamaterial (Ziso = 1.0); b,c) rhombic hexagonal honeycomb bi-mode metamaterials composed of single material (Ziso = 1.0) and bi-material
(Ziso = 1.0), respectively.

Figure 4. Specimensmanufactured by SLM. a) Parametricmodels of bi-modemicrostructure (Ziso = 1.07); b) CAD bi-mode periodic structure composed
of 10 × 10microstructures with size of 40mm × 40mm × 8 mm; c) twometallic samples (316 stainless steel); d) zoomed figure of specimen 2; e,f) SEM
scanning results with ×36 and ×150 magnification; g) the local hinge sizes of the ideal CAD model as designed; h,i) measurements of manufacturing
deviations, and the SEM scanning results with ×70 magnification of a 3D printed specimen.

are also compared in Table S3, Supporting Information. It is
noted that these optimized designs have similar topologies as
the microstructures used in acoustic cloaking device designs.[5]

The FOM values of the single-material and bi-material designs
are 𝛼FOM = 884.8 and 𝛼FOM = 1070.0, respectively. Clearly, these
rhombic-shaped microstructures have relative low bulk moduli
as compared with the octagonal microstructures with the same
material volume shown in Figure 2a. This comparison shows that
the proposed topology optimization model is able to generate bi-
mode microstructures with improved stiffness as compared with
heuristic or trial-and-error design approaches, while still satisfy-
ing the isotropic constraint.

2.6. Geometrical Model and Metallic 3D Printing

The small-sized hinges of the optimized bi-mode metamaterial
are difficult to be fabricated with 3D printing; therefore, a simpli-
fied geometrical model with the volume fraction V = 0.3 was re-
constructed (Figure 4a) according to the optimized design shown
in Figure 2a. It is composed of 10 × 10 periodic unit cells and
has a dimension of 40 mm × 40 mm × 8 mm (Figure 4b). Each
unit cell consists of 12 equicrural triangles ΔABC, with the an-
gle 𝜃∗ = 69.580 (see Figure S5, Supporting Information, for de-
tails of evaluation of the approximate isotropy and the isotropy
index Ziso = 1.07). Two specimens (Figure 4c) of this model were

Adv. Theory Simul. 2020, 3, 1900182 © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim1900182 (5 of 7)
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Figure 5. Compression test experiments. a) Experiment equipment, including Gopro 7 video camera, MTS New810 tension, and compression testing
machine; b) load–displacement curves of the two metallic specimens.

fabricated with 316 stainless steel via selective laser melting
(SLM, EOSINT-M280, for details see Section 4). The printed
specimens and the scanning results by the scanning electron
microscopy (SEM; for details see Section 4) are shown in Fig-
ure 4c,e,f. Due to the excessive metallic particles attached to the
surfaces of the printed specimens, the total masses of printed
specimens are larger than their designed values (see Section 4).
Compared with the ideal geometrical model (Figure 4b), these
specimens also have some size deviations and surface morphol-
ogy defects (see Figure 4g–i). In particular, the hinge regionswere
notably thickened. These manufacturing errors might result in
a significant discrepancy between the actual and predicted me-
chanical performance.

2.7. Compression Experiments

To observe the crushing pattern and energy absorption capabil-
ity of the optimized design, uniaxial compression tests of the two
metallic bi-mode metamaterial samples were conducted at room
temperature on the MTS New810 testing machine, as shown in
Figure 5a. The displacement load was applied to samples 1 and 2
(Figure 5b) at a speed of 1 mmmin−1. Since we mainly focus on
the collapse mode and energy absorption capability of the tested
samples in the experiments, here we only present the measured
load–displacement curves in Figure 5b. We found that the initial
buckling occurred on the bottom and top regions at a displace-
ment of 2.122 mm. The initial peak load for both samples are
14.5 kN. Later, the whole periodic structures could still resist the
compression loads with relative stable and high plateau regions.
This is partly due to the fact that the stainless steel material has a
ductile property. More importantly, the whole structure collapsed
in a layer-wise manner (see Figure 5b) because the uniaxial loads
also induced shear deformations (the bi-mode metamaterial can
barely sustain shear forces). Such a layer-wise deformationmode
introduced large hinge rotations and extensive plastic deforma-
tions of the unit cells, which improve the energy absorbing ca-
pacity of the bi-mode metamaterial.
Such phenomenon is also confirmed through our explicit

dynamic finite element (FE) simulations carried out with the

software Abaqus. Here, the ideal elastic-plastic model was em-
ployed (see Section 5). We find that the simulation results agree
with the experiments (see Figure 5b). Some deviations between
the experimental and simulation results may be caused by the
manufacturing errors of the specimens (see Figure 4g–i).

3. Conclusions and Remarks

In this study, we proposed a topology optimization method for
2D bi-mode metamaterials. The design objective was to maxi-
mize the bulk modulus and minimize the shear modulus. New
octagon honeycomb microstructural designs with extreme FOM
values were obtained with the proposed model. We have also
found that the double-cone joints are the dominant factors to de-
termine the bulk modulus and the FOM values. We further came
upwith bi-material bi-modemetamaterial designs by introducing
a hard reinforcing material phase into the design domain to en-
hance the stiffness. These findings may provide useful guidance
for designing new bi-mode functional devices.
A representative parametric bi-mode microstructure was fab-

ricated by 3D printing with stainless steel metallic and polymer
materials. A layer-wise failure mode of the metallic metamaterial
samples was observed through the axial compression experiment
tests and finite simulations.
In summary, the proposed design method is able to generate

bi-modemicrostructures with “quasi-fluid” properties, which can
be further exploited to design new function devices such as acous-
tic cloaks and wave filters. Additionally, It is envisaged that our
method can be extended to design a new type of 3D penta-mode
metamaterials.

4. Fabrications

The metallic specimens were fabricated with 316 stainless
steel.[33] The material properties are: Young’s modulus in
horizontal direction: 185 GPa; Young’s modulus in vertical di-
rection: 180 GPa; yield strength in horizontal direction: 530 ±
60 MPa; yield strength in vertical direction: 470 ± 90 MPa; mass

Adv. Theory Simul. 2020, 3, 1900182 © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim1900182 (6 of 7)
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density: 7.92 g∕cm3, and Poisson’s ratio: 0.4. The Lase power,
scanning speed, and layer thickness were 400 W, 6 m s−1 and
20 𝜇m, respectively. The actual masses of the two specimens are
37.2 and 37.94 g (the mass of the ideal CAD model is 32.28 g).
The specimens were cooled at room temperature for releasing
the residual stress.
The metallic microstructure morphologies and geometry de-

viations (see Figure 4e,f,h,i) were captured through SEM (FEI
Quanta 200). The voltage was 25 KV, and the magnification fac-
tors were set to be ×36 for the whole unit cell and ×150 for local
regions.
The deformations and failure modes were recorded by a video

camera (Gopro-7, 6 million pixels).

5. Numerical Simulation

A 3D shell model (with thickness 8 mm) was constructed for the
finite element simulation of the stainless steel specimens. The
material was assumed to be an isotropic one with Young’s mod-
ulus 185 GPa, yield strength 530 MPa, mass density 7.92 g∕cm3,
and Poisson’s ratio 0.4. The whole periodic structure was dis-
cretized into 15 273 bilinear quadrilateral elements with reduced
integration (S4R) and 1032 bilinear triangular elements (S3). The
general contact model, with a friction coefficient of 0.4, was con-
sidered in the analysis. The explicit dynamic step was set to be
0.01 s.
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Supporting Information is available from the Wiley Online Library or from
the author.
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